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1. Introduction 

Andreev qubits can be coupled using the coupling schemes already designed for conventional 

superconducting qubits [Rigetti,Bertet,Chen]. As in the case of flux qubits Andreev qubits can be coupled 

inductively. One of such schemes is illustrated in Fig. 1a, where the intermediate circuit corresponds to a 

tunable mutual inductance [Chen].  

The hybrid nanowires allow, however, to explore novel schemes like the one In Fig 1b and 1c. In these 

schemes the junctions are defined along the same nanowire. Fluxes �� and �� control the phase difference 

on the junctions defining the qubits while the gate potentials ���, ���  and ���  would allow to control the 

electron density on each junction.  Such scheme would allow for tunable coupling without introducing 

additional microwave transmission lines like in [chen] and thus reducing drastically the distance between 

qubits (from the 100 mu to 100 nm scale).   

In the present deliverable we present results on the microscopic modelling of two Andreev qubits based on a 

design like the ones of Fig. 1b and 1c. To simplify we focus on the short junction limit where each qubit is 

characterized by a single pair of Andreev levels and the spin-splitting is negligible.  

 

Fig. 1: Different two-qubit coupling schemes. a) The qubits defined on two distant superconducting loops are 

coupled by a central transmission lines which behaves as a tunable inductance as in Ref. [Chen]. b)The two 

qubits are defined on the same nanowire. The charge densities on the three junctions are tunable by means 

of the gate electrodes 1, 2 and c. c) Same as b) but with an additional flux to control the phase difference on 

the central junction.     

2. Minimal model 

We first analyze a minimal model for this type of design. Assuming for simplicity that the junctions are in the 

short limit (L <<ξ, where ξ is the superconducting coherence length) we model the qubits as spin-degenerate 

single levels coupled to superconducting leads, described by the following Hamiltonian, 
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parameters �
 describe the coupling to the superconducting leads, which controls the induced pairing in the 

normal regions. Within this model each qubit is characterized by a pair of Andreev states ±#$
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The qubit-qubit coupling through the central region is due to a weak overlap of the Andreev states wave-

functions that allows for quasiparticle tunneling, which is described by  
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where +,�  and +�-. denote the elastic cotunneling and the crossed Andreev amplitudes, which are such +,� , +�-. ≪ �
. These processes lead to an effective coupling between the qubits Andreev states. We now 
evaluate this coupling at the crossing where the two qubits states are degenerate. To simplify we consider a 
symmetric situation ��,� = � and ��,� = �. In a Nambu basis  (��↑��↓! ��↑��↓! ) the decoupled Andreev states 

wave-functions are given by 1�! = (cos 2� sin 2� 0 0)and 1�! = (0  0  cos 2� sin 2�) where 
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Then, at the degeneracy point ��,� = � and for real +,� 
 < 1�!|�|1�! > =  +,� cos 22 + <=(+�-.) sin 22 . 
 

This simple model suggests that the coupling can be tunable in several different ways. On the one hand, by 
depleting the central region by means of the central gate potential both +,� and +�-.  could be reduced to 
zero. Another interesting possibility would be to use the fluxes as tuning parameters to reach the condition 
where < 1�!|�|1�! > = 0  as a consequence of the interference between the cotunneling and crossed 
Andreev processes. Notice that this condition does not imply complete isolation of the two qubits but rather 
decoupling between the excited states 1�,�! . The ground states are given by 1�/ = (− sin 2�  cos 2� 0 0)  

and 1�/ = (0  0  −sin 2� cos 2�) , so that the coupling between the excited and the ground states at the 
degeneracy point is given by 
 < 1�/|�|1�! > =  −+,� sin 22 + <=(+�-.) cos 22 + �>?(+�-.). 
 

By tuning the matrix elements< 1�!,/|�|1�!,/ >one could thus perform different two-qubit operations.As in the 

present minimal model +,� and +�-. are just phenomenological parameters, in the following we will explore 
these possibilities using a more microscopic description of the nanowire junctions.   

 

3. Microscopic tight-binding model 

 
We now model the designs of Fig. 1b and 1c using a single chain tight-binding model with position 
dependent on-site and superconducting pairing parameters, i.e. 
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in order to describe, the effect of the gates  ���, ��� , ��� and the normal (Δ
 = 0) and superconducting regions 

(Δ
 = 0.185?=� ) respectively. The phase difference between superconducting regions is controlled with �
(�
DE� = 0, �
DE�� = ��,   �
DE�� = �� + ��,  �
DE� =  �� + �� + ��). The lattice parameter isF = 10�?, and on-
site (�
 ≲ 2+	/F�) and hopping (+
 = +	/F�  = ℏ�/(2?∗F�)) parameters correspond to a discretization of a 
slightly populated typical semiconductor nanowire with ?∗~0.02?,. 



 
For a concrete realization we take the lengths of the normal regions from left to right to be90, 100, and 120 �?in order to account for possible experimental imperfections; similarly for the superconducting ones, 
with 600, 250, 350, and 600 �?. Figure 2 (left) shows the resulting spectrum of Andreev states varying �� 
with fixed ��and �� , and compares it with results from the minimal model fitted near the avoided level 
crossing (dashed lines). The remaining subfigures depict the evolution of the wave-function for the lowest 
Andreev state as ��moves along the level crossing, displaying the switching of its localization from the right 
to the left qubit. 
 
 

 

 
Fig. 2. Tight-binding wave-function switch from right to left qubit as ��moves across the level crossing for the 
setup of Fig. 1b. Dashed lines in left panel correspond to the minimal model fitted near the crossing. Green 
lines in the wave-functions plots represent the on-site energies, modulated with the gates. Vertical dashed 
lines separate normal and superconducting regions. The central phase difference �� is set to zero. 
 

 

4. Low energy model with scattering matrix 

approach 

 
Here we present a low energy Hamiltonian for the design of Fig. 1c and Fig. 3a by using scattering matrix 
method. We consider a setup shown in Fig. 3b where the two qubits 1 and 2 have low Andreev energy states 
with high transmission probabilities O
 around the phase difference �
 = P such that they are coupled via a 
qubit in the middle with high Andreev energy resulting in an effective coupling between the two qubits. The 
Hamiltonian given by 
 

�,QQ = R�� 00 ��S + R���T�	���! ���T�	���!���T�	���! ���T�	���!
S, 

 
where the qubit Hamiltonian �
 and the Green's function for the middle junction T�	 are  
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where we assumed that the energy regime we are interested in is much smaller than the Andreev energy of 
the middle qubit, |#| ≪ #� . �
�and �
�!  are two by two matrices describing the overlaps of wave functions 
between i-junction and the middle junction,  
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where |1
X〉 with ^ = ± is the decoupled Andreev state of energy # = ^ #$
  and �∆ is the Hamiltonian for the 
superconducting gap in the region where the overlap occurs. The modification due to the presence of the 
middle junction consists of two parts: (1) the Andreev energy of each qubit is modified as follows,  
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 = �
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Fig. 3c shows the Andreev energies #� of �_� for different values of the phase difference ��. For clarity, the 

energy for the unperturbed qubit 1 is illustrated by dashed lines. The dependence on �� is the same for �_�. 
(2) The coupling between qubits 1 and 2 is described by the term  
 � = ���T�	���! , 
 
 

 
 
Fig. 3. Low energy model for the coupled two qubits. (a) Schematic of the experimental setup which is the 
same as in Fig. 1(c). `a and `. are the distances of the qubits 1 and 2 from the middle junction. (b) Andreev 
energies of the junctions in the absence of coupling between them. Qubits 1 and 2 with high transmission 
probabilities O� and O� are coupled via the middle qubit with low transmission O�. (c) Andreev energy of qubit 

1 for different values of �� by solving the perturbed Hamiltonian �_� due to the presence of the junction in the 
middle. Dashed curves indicate the unperturbed Andreev energy #$�. (d), (e) and (f) are results obtained by 

solving the low energy Hamiltonian. Dashed curves in (d) correspond to the energy eigenvalues of �_
 without 
the coupling �. Here  `a = `. = 380nm are used in (c) and (d) and `a = 380nm in (e). 
 
 
which induces the energy splitting. Note that the direct coupling between the qubits 1 and 2, which becomes 
important at �� = 0 and 2P, is neglected in our effective model, and thus, the coupling term � is valid away 
from the values of ��. Fig. 3d shows the anti-crossings between the energy levels of qubits 1 and 2 around 
at �� = 0.7 P and 1.3 P. Their magnitudes of the anti-crossing gaps are asymmetric. 
 



To understand the asymmetry of the anti-crossing gaps in Fig. 3d, which we refer to as the left gap c#d and 
right gap c#e with respect to �� = P, we analyze the matrix element of the coupling,  
 

|⟨Ψ�!|�|Ψ�!⟩| = 1
#� g+!!��  +!!�� ∗ − +!/��  +!/�� ∗g. 

 
In the ballistic limit O�,� = 1, the matrix element at the crossing point �� = �� and �� = 2P − ��  can be 

expressed as 

 

|⟨Ψ�!|�|Ψ�!⟩|(��~0.7 P) = h∆� − #��2 i� j(`a , `.) sin ��2 cos ��2 , 
|⟨Ψ�!|�|Ψ�!⟩|(��~1.3 P) = h∆� − #��2 i� j(`a , `.) sin ��2 , 

 
where i is the superconducting coherence length and j(`a , `.) is given by 

 

j(`a , `.) = klmn(/opqr)/lmn (/osqr)
os/op t k lmn(/ouqv)/lmn (/osqv)

os/ou t. 
 

Here, w
 = (1/i)h1 − #$
� /∆�. In Fig. 4, we compare the gap with the matrix elements discussed above. Here, 

the black solid curves are obtained by solving our effective Hamiltonian with parameters O�,� = 0.99, O� = 0.3 

and �� = 0.5 P . These solutions exhibit clearly the asymmetry between c#d  and c#e . The dip structure 
shown in c#d  vs �� around �� = 0.8 P is due to the fact that the two gaps are merged as �� → P. In our 
analysis in the ballistic limit, illustrated by blue dotted lines in Fig. 4, the mixing of the gaps is not taken into 
account and there is no dip structure.  

 
 

 

 
Fig. 4. Asymmetry between left and right anti-crossing gaps as a function of ��. The solutions obtained by 
solving the effective Hamiltonian are drawn by black solid lines and the approximate solutions from the 
matrix element analyzed in the text are illustrated by blue dotted lines. Here, c#d(�� = 0.7P) and c#e(�� =0.7P), respectively, correspond to the left and right gaps shown in Fig. 3d.   

 

 

5. Conclusions 

In this deliverable, we explored theoretically a novel scheme for two Andreev qubits made by three-coupled 
Josephson weak links in nanowire-superconductor hybrid devices as shown in Fig. 1b and c. We studied the 
devices with three models – a minimal model, a microscopic tight-binding model and an effective low-energy 
model based on scattering theory - with the focus on the tunable coupling between the qubits. Using the 
minimal model, we found a simple expression of the coupling in terms of the elastic cotunneling and the 
crossed Andreev amplitudes, thereby showing the possibility of performing two-qubit operations. In the tight-



binding model with realistic parameters, we calculated the spatial probability densities of the Andreev qubits 
around the level crossing point, and observed the switching of their localization from one to the other qubit as 
we cross the energy level crossing point. With the low-energy model, we further analyzed the dependence of 
the coupling on the fluxes and provided analytic expressions to explain the asymmetric coupling strength at 
the crossing points. In future works we shall explore this type of tunable coupling in the presence of spin-
orbit coupling that could be useful for manipulating spin degree of freedom of the Andreev levels.  
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